CHAPTER 1

Quantum Mechanics — 1

¢ Postulates of Quantum Mechanics

In modern quantum theory, the postulates of quantum mechanics are simply the step-to-step
procedure to solve a simple quantum mechanical problem. In other words, it is like the manual that must be
followed to retrieve the information about various states of any quantum mechanical system. We will first
learn about the nature and the significance of these postulates, and then we will apply them to some real
problems like the particle in a one-dimensional box or the harmonic oscillator.

» The First Postulate

All time-independent states of any quantum mechanical system can be described mathematically as

long as the function used is single-valued, continuous and finite.

Explanation: The systems around us can be broadly classified into two categories; the first is classical and the
other one as quantum mechanical. The classical systems simply refer to the systems which are governed by
the classical or the Newtonian mechanics. Now because all the macroscopic objects follow Newton’s laws of
motion, they fall in the category of classical systems; for example, a rotating gym dumbbell, the vibrating
spring of steel, or an athlete running in the playground. Every classical system can possess many states which
belong to a continuous domain, and each state can be described mathematically.

Classical System

States . . .
(Continuous) —> Si Sy S3 Sy Ss Sy Sy

.

Can be described mathematically

However, if the rotating gym dumbbell is replaced by the rotating diatomic molecule, the system
would not remain classical anymore and would start violating classical laws. The states of such microscopic
systems (here it just means the extremely small) belong to a discontinuous domain and can also be described
mathematically. These mathematical descriptions are labeled as yi, y2, ys ..... ¥, and generally called as the
“wave functions”. The term “wave function” is used because as we go from the macroscopic to the microscopic
world i.e. from classical to the quantum mechanical world, things start behaving like waves rather particle. All

of the states are wave-like; and because every wave we see around us is continuous, single-valued and finite;
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only continuous, single-valued and finite expressions can represent those states. For instance, when you drop
a stone in a standstill pond, the waves are generated which travel from the center to the boundary of the pond;
and you don’t see any discontinuity in it.

Quantum Mechanical System

States

(Discontinuous) = 5 S, S3 S4 Ss Sy Sy,

Wi, W5, Wi WPyare the mathematical description for S, states

Hence, if a function is'not single-valued; continuous and finite; it will not be able to represent any
wave-like behavior at all. That is why every function that correlates a.quantum mechanical state must be single-

valued, continuous and finite; and this function describes the corresponding state completely.
» The Second Postulate

For every physical property likelinear momentuin or thekinetic energy, a particular operator exists

in quantum mechanics, the nature of which depends upon the classical expression of the same property.

Explanation: In classical mechanics; there are simply straight forward formulas for all physical properties;
like linear momentum can simply be caleculated by multiplying the mass with velocity. However, in case of
quantum mechanical systems, the value of a certain physical property for a particular state cannot be calculated
simply by using its classical formula but fronian.operator. It.does sound silly but the classical formulas which
are so well-tested on the scale of time fail in quantum world. For instance, you can use the mv?/2 to calculate
the kinetic energy of a moving particle in classical world by just putting its mass and velocity; but if the mass
of the moving particle is extremely less, you will not get any rational results.

It is also worthy to note it again that though the classical formulas fail to give the value of physical
property, they are still important as they form the basis of the derivations for corresponding quantum
mechanical operators. For instance, the operator for kinetic energy (T) along x-axis can be derived as:

(mv)?  p? ()

2m  2m

1
K.E.(T) = Emv2 =

Where m and v are mass and the velocity, respectively; and p represents the angular momentum whose squared

operator is:
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a2 _ _hza_z 2
Px = 412 9x2

Now putting the value of momentum squared from equation (2) into equation (1), we get:

~ _ —h* 9% (3)
* 8m2mox?

The expressions of various quantum mechanical operators are given below.

Table 1. Various important physical properties and their corresponding quantum mechanical operators.

Physical property Operator
Name Symbol Symbol Operation
Position X X Multiplication by x
Position squared x> % Multiplication by x?
Momentum Dx Dx L i
2mi 0x
Momentum squared . & Pz —h? 02
412 0x?
Kinetic energy . P Ty —h?* 92
R 8m2m dx?
Potential energy V(x) Y x) Multiplication by V(x)
Total energy E =T+ V(x H —h? 92
( ) 2 Ao + V(X)
8mémox

For three dimensional systems, the total operator can be obtained by summing the individual

operators along three different axes. For instance, some important three-dimensional operators are:

7o —h? [ 9? N a? N 0° (4)
~ 8m2m\ox2  9y?  0z2
A_h<8+6+6) ®))
P = omi\ox dy 0z
A= —h 62+62+62 +V ©)
~ 8m2m\9x2  dy?  0z2 (x.7,2)
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» The Third Postulate

If v is a well-behaved function for the given state of system and A is a suitable operator for a
particular physical property, then the operation on y by the operator 4 gives the function w multiplied by the
value of the physical property which can be constant or variable but always real (R). Mathematically, it can

be shown as:
Ayp =Ry (7

Explanation: The third postulate of quantum mechanics actually connects the first and second postulate of
quantum mechanics. The first postulate talks about the possibility of describing a quantum mechanical state
mathematically, while the second postulate says that the values of all physical properties in the quantum world
are obtained by the operator rather than the simple classical formula. Now the third postulate says that if we
operate the operator (from second postulate) over the wave function (from first postulate), we will get the value
of the corresponding physical property.

However, at this point, a new problem arises-as we do not know the exact mathematical description
i.e. the wave function of any quantum mechanical-state;-and the operators need the absolute mathematical
description of the quantum mechanical statet yield any-actual result. Now though we know the expressions
of different operators proposed by the second postulate; the first postulate speaks only about the presence of a
single-valued, continuous and finite mathematical function but does not give actual function itself; and without
the knowledge of actual “wave functions”, the operators are pretty much useless. Therefore, one would think
that there must be some route by which the wave functions are obtained first, which would be used as operand
afterward. However, the procedure to find the exact mathematical descriptions of various quantum mechanical
states is somewhat more synergistic. The “magic mystery” is that all the'operators need absolute expression of
the wave function that defines the quantum mechanical state except one; the most famous “Hamiltonian
operator”. The special thing about the Hamiltonian operator is that it does not necessarily need the absolute
form but the symbolic form only to yield the value of its, physical property i.e. energy. Nevertheless, in the
process of applying the Hamiltonian operator-over. the symbolic form of the wave function, the absolute
expression is also obtained. Mathematically,

Hy = Ey (3)
After putting the expression of the Hamiltonian operator in equation (8) and then rearranging, we get:
0%y 9%y N 0%y N 8nPm(E — V)Y 0 )
9x2  0y?  0z2 h2 h

The second-order differential equation i.e. equation (9) is the famous Schrodinger wave equation, the
solution of which gives not only the energy but the wave function as well. Now, once the exact expression of

the wave function representing a particular state is known, other operators can be operated over it to find their

values.
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» The Fourth Postulate

If the value of the physical property obtained after multiplying the wave function by the
corresponding operator is constant (postulate 3), the value is called as the eigen-value and is directly

reportable; and the wave function will be labeled as the eigen-function of the operator used.

Explanation: The third postulate said that when the wave function of a particular quantum mechanical state
is multiplied by the operator of an observable quantity, we get a real value multiplied by the wave function
itself; however, the value obtained so can be constant or variable. Mathematically,

VAN
OVY = Value ¥

N\

EAED. i «— Constant Variable —

Eigen Value

Non-eigen Function
Non-eigen Value

The constant value of the observable quantity' can be reported directly, and the function is called the
eigenfunction of the operator under consideration.

» The Fifth Postulate

If the value of-the-physical property—obtained—after-multiplying-the- wave function by the
corresponding operator. is variable i.e. non-eigen, the value can be reported only after averaging it over the

whole configurational space.

AL (10)
¢ dr

Explanation: As we have seen in.the fourth postulate-that the value obtained by multiplying the Hermitian

<a>ora=

operator with any quantum mechanical state can also be variable in nature. For instance, if we multiply a wave

function simply by position operator, we will get

2 =xy (11)
or
P % (12)

Now because “x” is a variable number, it must have reported as an average value before any further rational
argument is made.

Therefore, we can say that the fifth postulate is simply an extension of the fourth postulate; i.e. the
fourth postulate is used to obtain the value of a particular physical property if it is an eigenvalue, however, the

fifth postulate is employed to calculate all non-eigenvalues.
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% Derivation of Schrodinger Wave Equation

The Schrodinger wave equation can be derived from the classical wave equation as well as from the
third postulate of quantum mechanics. Now though the two routes may appear completely different, the final
result is just the same indicating the objectivity of the quantum mechanical system.

» The Derivation of Schrodinger Wave Equation from Classical Wave Equation

After the failure of the Bohr atomic model to comply with the Heisenberg’s uncertainty principle and
dual character proposed by Louis de Broglie in 1924, an Austrian physicist Erwin Schrodinger developed his
legendary equation by making the use of wave-particle duality and classical wave equation. In order to
understand the concept involved, consider a wave traveling in a string along the x-axis with velocity v.
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Figure 1. The wave motion in a string.

It can be clearly seen that the amplitude of the wave at any time ¢ is the function of displacement x, and the
equation for wave motion can be formulated as given below.

0%y 10% (13)
dx2  v2dt?

Therefore, we can say that y is a function of x well at ¢.

y =ff'(®) (14)

Where f(x) and f"(?) are the functions of coordinate x and time, respectively. The nature of the function f{x) can
be understood by taking the example of stationary or the standing wave.

A standing wave is created in a string fixed between two points with a wave traveling in one direction,
and when it strikes the other end, it gets reflected with the same velocity but in negative amplitude. This would
create vibrations in that string with or without nodes depending upon the frequency incorporated. We can
create fundamental mode (0 node), first overtone (1 node) or second overtone (2 nodes) just by changing the
vibrational frequency. The nature of these standing or stationary waves can be understood more clearly by the

diagram given below.
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Figure 2. Standing waves in a string.

The mathematical description for such a wave motion is

fA(t) = A'sin 2mvt

(15)

Where 4 is a constant representing maximum amplitude andv is the frequency of the vibration. Now putting

the value of f'(¢) from equation (15) in.equation (14), we-get
y ="flx)yASin2mvt
Differentiating the above equation w.r.t. ¢, we are left with

9y
Fraey f(x)A2nv Cos 2mvt

Differentiating again

%y

¥ —f(x) 4m%v? A Sin 2nvt

=7 = ATV f(X) f'(6)

Now differentiating equation (14) w.r.t. x only, we get

dy _ ., 9f(x)
- O
Differentiating again
0%y 0%f (x)

axz f® 0x2

Now put the value of equation (19) and (21) in equation (13), we get
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02 1 22
o L - (D) antvipco o] e
0%f(x)  —4m?v? (23)

f(x)

O0x? v2

The equation (23) is now time-independent; and therefore, shows the amplitude dependence only upon the
coordinate x. Since ¢ = VA (v = ¢/)A), the velocity of the wave can also be replaced by the multiplication of
frequency and wavelength i.e. v =vA.

92 —472y? 24
a]:c(zx - vgazv f&) o
02 —47? 25
6];(;): A;T () (25)

The symbol of the function f(x) is replaced by popular y(x).or simply the .

02~ =42 (26)
AN 1P

Also, as we know that A=//m1v, the equation (26) becomes

0% —4An?m2v? (27)
e VIl
04 n 4mr?mv? T (28)
0x2 h?

Furthermore, as the total energy (£).is simply the sum of the potential (J/) and kinetic energy, we can say that

2

iy mv L L (29)
2

mv? =2(E -V) (30)

After putting the value of mv? from equation (30) in equation (28), we get

62 8 2 31
T E =0 o

For three-dimension i.e. (x, y, z), the above equation can be extended to following

FE N CI R LN e (32)
- E— =
oxZ T ayz Tagz T Tz ETVI¥=0

The above-mentioned second order differential equation i.e. equation (32) is our popular form of the

Schrodinger wave equation.
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» The Derivation of Schrodinger Wave Equation from the Postulates of Quantum Mechanics

The Schrodinger wave equation can be derived using the first three postulates of quantum mechanics.
In other words, we can say that the Schrodinger wave equation is nothing but the rearranged form of the
following equation:

HY = Ey (12)

(134

In order to prove the above claim, consider a single particle having “m” mass that moves with a velocity “v
in the three-dimensional region. The sum of its kinetic and potential energy can be given as:

E=T+V (13)
However, we know that

1 p? (14)
T =—mv?=—
va 2m

Where “p” represents the total linear mementum of the particle‘'under consideration. Furthermore, as we also
know that

p’ =y +py + s (15)

Where psx, py and p: are the magnitudes of total linear momentum along x,y and z-axis, respectively. Now
putting the value of p* from'equation{(15) into equation(14), we get the following

PRty g (16)

T
2m

And now put the value of kinetic energy from equation (16) into.equation (13). We get

_ﬁ+ﬁ+ﬁ+ (17)

E Vv
2m

However, from the second postulate of quantum mechanics, we know that the expressions for linear
momentum operator along three different directions are:

~_hd (18)
Px = oriox
~_h o (19)
Py = oniay
~_ho (20)
Pz = 27i 0z

The operator of “V” is simply itself as it is a function of position coordinates only.
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Hence, after putting values of linear momentum operators and potential energy operator in equation (17), the
operator for total energy (Hamiltonian operator) becomes

FI—l (h 6>2+<h 6>2+(h 6)2 iy 21
~2m|\2midx 2mi dy 2mi 0z
i h? [ 92 N 02 N 92 Ly (22)
© 8m2m\0x?  9y? 9z
_ h? (23)
_ _ 2
H 87t2mv +V
Where
92 0% 02
V= =

bt
0x? 0y? 0z
represents the Laplacian operator.

Now, after putting the value of Hamiltonian operator from-equation’(22) into equation (12) i.e. given by the

third postulate of quantum mechanics; get

h? a° 0% e (24)
A TET b

8m \Ox% " 0y?\ a7
" widw dealindliutolpmey - o 23
ST PR M R P78 R &
h2\ g2 R O? h2 .82 26
) 9, o U, - o (26)
8m?m 0x? Bmim dy? 8mim 0z
Multiplying the equation (26) throughout by
8m?m
—
we get
0%y 0%y 0% 8m’m 8m?m 27
b, OV O srm gTm @7)
0x?  0y? 0z? h? h?
92 02 02 8m?m 28
b O, 0% V-0 @8)

ox?  0y? 0z? h?

Equation (28) is the most popular form of the Schrodinger wave equation for three dimensional systems. In
the case of two and one dimensional systems first three terms can be reduced to two and one, respectively.
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¢ Max-Born Interpretation of Wave Functions

In 1926, a German physicist Max Born formulated a rule which is generally called as the Born law
or Born's rule of quantum mechanics, giving the probability that a measurement on a quantum system will
yield a given result. In other words, it states that the probability density of finding the particle at a given point
is proportional to the square of the magnitude of the particle's wavefunction at that point. The Max-Born
interpretation is one of the key concepts of quantum mechanics to understand wave-particle duality.

Let us suppose that the particle under consideration is an electron whose way of existence is
represented by a mathematical expression y which is a function of the electron’s coordinates i.e. x, y, and z.
Max Born actually suggested that because this mathematical expression is single-valued, continuous and finite
i.e. wave-like; one can opt the same route to find it’s intensity as we use in case of light or sound waves. In the
case of light or sound waves, the intensity at any point can simply be obtained by squaring the amplitude i.e.
v of the wave at the same point. Therefore, in the case of the electron, the square of the amplitude of electron
wave (y?) at a particular point also gives the intensity of the electron wave at the same point. In other words,
the density of electron wave (probability density) at a point for a quantum mechanical state is simply obtained
by the square of the magnitude of the corresponding wavefunction at the same point. Mathematically, we can
show this as:

Probability density = ||? = Yy~ (29)

Where y* designates a complex conjugate of the wave function y. The reason for using y" lies in the fact that
the wave function representing a quantum mechanical state is not always real but be imaginary as well.
However, as the probability density should always be real, yy" is more appropriate than simple y2. In other
words, if the wave function defining the quantum mechanical state is real, we can use y? as the probability
density; nevertheless, if the wave function does contain the imaginary part (like v = a + ib), yy” must be used
to yield real values. This can be explained by taking an imaginary expression y and then multiplying it by its
complex conjugate " to yield real value.

Y =a+ib; Y =a-—ib (30)

or
W* = (a+ib) X (a—ib) (1)

or
Y* = a? + b2 (32)

Moreover, if y is real, y = y*, yy* becomes y?, the value we have already discussed.

Now though the probability density in space is not a constant parameter (y is not constant), in a very
small segment it can be considered constant. Now let us discuss the Max-Born interpretation for one, two and

three dimensional systems.
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» One Dimensional Systems

The probability of finding the particle in any one-dimensional system in the region from x to x+dx
must be obtained by integrating y? from x to x+dx i.e. by finding the area under the curve from x to x-+dx.

Now although the y? or yy” (because y is continuous) varies continuously with x, the decrease or
increase in y? can be neglected and it can be assumed that it remains constant as we move from x to x+dx.

Figure 3. Born interpretation of wave function and probability density in a one-dimensional system.

Therefore, the area of the shaded region and hence:the probability,of finding the particle can be obtained just
by multiplying the length (or height i.c. y?) with the width (dx) of the narrow rectangle. Thus we can say that

Propability = ||%.X (dx). = Ppidx.= P?dx (33)

Since the chances of finding the particle over whole/length (whole configurational space) must be unity, we
get the following

flul? x (@) = wyrax = prax (34)

» Two Dimensional Systems

The probability of finding the particle in an area element dx dy (dA), situated at a distance » distance
from the center, would be y (x, y) X y* (x, y) X dx * dy; or in short can be written as yy'dA. Hence, it must be
obtained by integrating y? from (x, y) to (x+dx, y+dy) i.e. by finding the area under the curve d4. Now although
the y? or yy" (because y is continuous) varies continuously with coordinates (x ), the decrease or increase in

y? can be neglected and it can be assumed that it remains constant as we move from (x, ) to (x+dx, y+dy).

Therefore, the area of the shaded region and hence the probability of finding the particle can be
obtained just by multiplying the magnitude of the wave function (y?) with the area (dA) of the area element.
Thus we can say that
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Probability = [|? x (dA) = Yp*dA = p?dA (35)

Since the chances of finding the particle over the whole area (whole configurational space) must be unity, we

get the following

$lul? x @a) = §yyraa = fyraa (36)

The pictorial representation of the area element is given below.

A
b 4 dx
[dy

>

X

Figure 2. Born interpretation of waye function and probability density in two dimensional systems.

» Three Dimensional System

The probability of finding the partticle in a volume element dx dy dz (dV), situated at a distance r
distance from the center, would be y (x, y,2) X v (x, , z) X.@dx % dyx dz; or'in short can be written as yy'dV.
must be obtained by integrating v’ from (¥, 3, z) to (x+dx, y+dy, z+dz) i.e. by finding the area under the curve
from (x, y, z) to (x+dx, y+dy, z+dz). Now-although the \v*'or Yy~ (because \ is continuous) varies continuously
with coordinates (x, y, z), the decrease or increase-in y? cannéeglected and it can be assumed that it remains
constant as we move from (x, y, z) to (x+dx, y+dy, z+dz).

Therefore, the probability of finding the particle can be obtained just by multiplying the magnitude
of the wave function (y?) with the volume (dV) of the area element. Thus we can say that

Probability = |¢|? x (dV) = Ypy*dV = ¢p?dV (35)
Since the chances of finding the particle over the whole area (whole configurational space) must be unity, we
get the following
Il x (@) = §yyrav = § yeav G6)
The pictorial representation of the area element is given below.
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,dx dy

Figure 3. Born interpretation of wave function and probability density in three dimensional systems.

¢ The Heisenberg’s Uncertainty Principle

In quantum mechanical world, the Heisenberg's uncertainty principle (or simply the uncertainty
principle) is one of a variety of mathematical inequalities asserting a fundamental limit to the precision with
which certain pairs of physical properties of a particle, known as complementary variables or canonically
conjugate variables such as position x and momentum p, can be known. The concept was first introduced in
1927, by a German physicist Werner Heisenberg.

The Heisenberg’s uncertainty principle states that the more precisely the position of some particle is

determined, the less precisely its momentum can be known, and vice versa.

The formal inequality relating the standard deviation of position Ax and the standard deviation of
momentum Ap, was derived by Earle Hesse Kennard later that year and by Hermann Weyl in 1928:

h (37)
Ax. A —
or
Ax. Ape> h2 (38)

Where 7 is the reduced Planck’s constant, which is obviously equal to the Planck’s constant divided by 2.
Besides the equation (37), the is also an energy-time uncertainty relation given by W. Heisenberg which states
that higher the lifetime of a quantum mechanical state, less uncertain would be the energy value.
Mathematically, it can be shown as:

h
AE.At = — (39)
2
Where AE and At represent the uncertainties in the energy and time respectively.
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» Position Momentum Uncertainty

Among various kinds of uncertainties, the position-momentum uncertainty is one of the popular kind
that arises as a consequence of wave-particle duality. In order to understand the relation, we first need to study
the effect of wave behavior on the simultaneous measurement of position about x-coordinate and the linear

momentum component along the x-axis for a microscopic particle.

Consider a beam of particles traveling with a momentum “p” along the y-direction, and this beam
finally strikes a narrow slit of width “w”. Now, from the principles of optics, we know that the uncertainty in
the position of the particle along x-axis must be equal to the slit width. In other words, as the width of the slit
is along x-axis, any particle that strikes the detector must have crossed the Ax region i.e. w, the slit width
available. However, we exactly don’t know where it does cross from. It could be along the center of the slit,
or along a line slightly above or below the central trajectory. Therefore, the slit width (w = Ax) would be equal
to a crossing domain that we are uncertain about. However, a diffraction pattern will be observed in the case
of microscopic particles because of their wave-like character. The amplitude of the wave at a particular point
on the detector represents the number of the particles reaching that point. Now because of this diffraction, the
incident beam does not strike only at the central point-O-but also.at the above and below to it. It means that
some particles do reach upward and downward to. O, suggesting that the part of their linear momentum is
transferred along x-axis also.

P stno

Vv V¥V V vV .V v v
o 3
S
T — >
A
A
i

Figure 4. The diffraction of electron waves by single slit systems.
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The x-component of linear momentum of the wave (aka particle) diffracted at an angle a can be obtained by
the rectangular resolution of the linear momentum vector. The particles diffracted upward and downward at
an angle o will yield the x-component as P sina and —P sina, respectively. Now because a large number of
particles reach the plate in between +a to —a i.e in between the first minimums, half of the momentum spread
in the central diffraction peak should give the uncertainty in the momentum along x-axis. Mathematically, we
can say that

Ap, = P sina (40)

Multiplying the above equation by the uncertainty in the position i.e. width of the slit used for the measurement
purpose, we get

Ax.Ap, = w.P sina (41)

Here, it is very important to recall the fact that the-condition-which must be satisfied to obtain the first minima
is that the path difference between the waves reaching'the minima point should be an integral multiple of A/2.

Figure 5. The calculation for 1% order diffraction for electron wave in single slit systems.

Hence we have the following equalities from the diagram given above.
AQ = DQ (42)
CQ = dif ference in the path length (43)

Now because the distance of the detector is very large as compared to the slit width, AQ and CQ can be
considered parallel to each other i.e. AQ | DQ. Hence, we can say that

, — DALAL
Buy the complete book with TOC navigation, ;
high resolution images and Copyright © Mandeep Dalal INSTITUTE

no watermark.


https://www.dalalinstitute.com/books/a-textbook-of-physical-chemistry-volume-1/

CHAPTER 1 Quantum Mechanics — |

27

< ADC = 90°
<CAD =«

also

From the trigonometric relations, we get

o _ .
AC_ mnma

Ch = AC Sin

Putting the values of AC and CD from equation (46) and.(47) in‘equation (49), we get

A_WS,
2= 2 ina
A =wSina

Now, after putting the value of wfrom equation (51),1n equation (41), we get

A
Ax. Apy= m.P sina

Ax.Ap, = A. P

Using the de Broglie relation (A = //p) in equation (53), we get

h
Ax.Apx:F.P

Ax.Ap, =h

(44)

(45)

(46)

(47)

(43)

(49)

(50)

(51

(52)

(33)

(54)

(55)

Now because we didn’t define the uncertainty very precisely, we should not use the “equal” sign. Therefore,

the above equation can be reduced to the following.

Ax.Ap, = h

(56)

This eventually means that decreasing the uncertainty in the position of the incident particle (decreasing the

slit width) would result in a higher uncertainty in the momentum along x-axis; while the higher slit width does

give more precise momentum but small precision in the calculation of the position of the incident particle.
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» Energy Time Uncertainty

The uncertainty principle doesn’t limit itself to position-momentum only but can also be applied to
some other pairs of conjugate variables. All the variable pairs whose products have the same dimension as the
Plank’s constant # (Js) are said to be a conjugate pair. Besides the position-momentum, another famous
uncertainty is relation energy-time because the product of these two quantities (energy X time) also has the
unit of 4 (Js).

AE.At ~ h (57)

Where AE and Atf are uncertainties in energy and time, respectively. This popular relation can be derived
directly from the concept of wave-particle duality. In the quantum mechanical world, a particle is supposed to
possess a wave packet. Now, let us consider that this wave packet occupies the Ax region along the direction
x-direction and travels with a velocity v. The time it needs to pass a certain point in x-direction has an
uncertainty magnitude of Az, and can be formulated as:

Ax (58)

At = —
14

Now because this wave packet.occupies the region Ax, the momentum uncertainty along x-axis can be given
by the following relation.

h (59)
Apx Bl A_X
or
h
iyl (60)
Apy

Putting the value of Ax from equation (60).in equation (58), we get

h
At = 6l
VAp,
Moreover, we also know that
_px (62)
2m
Differentiating the above equation w.r.t px, we get
dE. AE p, mv (63)
dp, Ap, m m -
dE 64
AE = —Ap, = v.Ap, ©4)

dpy
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Multiplying equation (63) and (64), we get

h (65)
AE. At = UApx pr

AE.At ~ h (66)

The physical interpretation of the above relation can be viewed in terms of fluctuating energy level with a total
AE uncertainty if the system does not stay in it longer than Af interval of time i.e. lifetime of the state.

¢ Quantum Mechanical Operators and Their Commutation Relations

An operator may be simply defined as a mathematical procedure or instruction which is carried out

over a function to yield another function.
(Operator) . (Function) = (Another function) (67)

The function used on the left-hand side of the equation (67) is called as the operand i.e. the function
over which the operation is actually carried out. The operator alone has no significance but when operated over
a certain mathematical description, these operators can provide very detailed insights into those functions.
Some of the simple illustrations of equation (67) are given below.

i) Consider the differential operator d/dx whose operation has to be studied over the function y = x°. The
mathematical treatment is

dy d (68)

t o5 _ 4
dx_dxx >x

The operation of d/dx on y means that the rate of change of function y w.r.t. the variable x. The expression x°
is the operand while the 5x* is the final result of our differential operator.

i) Consider the integral operator [ (y) dx whose operation has to be studied over the function y = x°. The
mathematical treatment is

6 69
fy(dx) - fo(dx) =% (69)

The operation of [dx on y means that we can find the function whose derivative is x°. The expression x° is the

operand while the x%/6 is the final result of our integral operator.

In a similar way, the multiplication of a function by a constant number, or taking the square and cube
roots of any function are also the operators which give some other function after operating them over the
operand. The symbol of the operator typically carries a cap over it (A) which differentiates it from the function

used in the whole procedure.

: DALAL
Copyright © Mandeep Dalal INSTITUTE


https://www.dalalinstitute.com/books/a-textbook-of-physical-chemistry-volume-1/

30 A Textbook of Physical Chemistry — Volume |

» Algebra of Operators

Just like the normal algebra, the resultants like addition or the multiplication of operators also follow
certain rules; however, these rules are different from the typical algebra. Some of the most important rules of
operator algebra are given below.

1. Addition and subtraction of operators: Let A and B as two different operators; f as the function that has
to be used as the operand. Then, the addition and subtraction of these two operators must be carried out in the
manner discussed below.

(A+B)f = Af + Bf (70)
and
(A-B)f = Af - Bf (71)

2. Multiplication of operators: If A and-B as two different operators; and f as the function that has to be used

as operand. Then, the multiplication of these two operators must be carried out in the manner discussed below.
ARf = £/ (72)

The interpretation of the-above-equation is-that-first-we need-to-operate-B-onf,-which would give us another
function /7, which in turn is further used as the operand for operator giving the final result f”. In other words,
we can say that when multiplication. of two. or, more. operators: is used, - we should follow from left to right.
Moreover, the square or cube of a particular operator must:be considered as double or triple multiplication of

the operator itself; mathematically,-it-can-be-shown-as-given-below:
A%F =AAf (73)

At this point it also very important to discuss onerof the most fundamental properties of operator
multiplication, the commutation relation orthe commutation rule..Consider two operators, A and B which can

be operated over the function f.

L d 74
A:E; B=x; f=x8 (74)

Now
N 75
ABf = d—x(x3) = d—x4 = 4x3 (75)

And
~n d 6
BAf = xa(xg’) = x(3x?%) = 3x3 (76)

From equation (75) and (76), it the clear that in this case
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ABf + BAf (77)
These operators are said to be non-commutating with the commutator given below.
AB — BA = 4x3 — 3x3 (78)

However, the two operators are said to be commute if their result is the same even after reverting their order
of application. Mathematically, it can be stated as given by equation (79).

ABf = BAf (79)
This is quite different from the normal algebra in which the product of two numbers is always the same

irrespective of the order of multiplication (x.y = y.x). Summarizing the commutation rule, it can be concluded
that

[4,B] = 48— BA = 0 —> Commutating (80)
and
[4, Bl =AB = BA #0 = Non-commutating (81)

3. Linear Operator: An operator A is said to be a linear operator ifits application on the sum of two functions
fand g gives the same result as the sum of'its individual operations. Mathematically, it can be shown as given

below.
AL+ g) =Af +4g (82)
For example, consider the differential operator A; with fand g-as the functions which have to be used as the
operand.
N d
A=l =2t _g=rir? ®
or
. d d (84)
A =—(2x2 H=—("BxH)=1
(f+9) dx(x + 3x°) dx(5x) 0x
or
(85)

N " d 5 d 5
Af+Ag=a(2x )+a(3x ) =4x + 6x = 10x

Hence, from equation (84) and equation (85), it is clear that the differential operator is clearly linear
in nature. On the other hand, the “square root” operator is not linear as it does not give the same result when

operated individually.
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» Some Important Quantum Mechanical Operators

One of the most basic and very popular operators in quantum mechanics is the Laplacian operator,
typically symbolized as V2, and is given by the following expression.

92 9% 02 (86)

V2= — p— —
6x2+6y2+622

The popular form of the Schrodinger equation can be written in terms of Laplacian operator as well.

0%y 9%y 9% 8mPm (87)
oz Tz Yozt E- V=0
or
82 (88)

2 Tm

The Laplacian operator is pronounced as:‘“‘del squared”. This operater is also a part of the “mighty”
Hamiltonian operator which forms the basis-for value evaluation for other operators, as we have already
discussed in the postulates of quantummechanics. The Hamiltonian operator is typically symbolized as H and
is given by the following expression.

" h? (az 92 az> (89)
g 4V

I PR RS
or
= h?2 90
H=———V U 0
8mr4m

The popular form of the Schrodinger equation-is written in terms of the Hamiltonian operator as well.
HyY = EY 1)

or

h? (9% 9% 02 (92)
“BnZm\ox? T ay? o2 TV |V T EY

or

93)

8m2m

h2
< V2+V>l,b=Ez,b

Furthermore, we know from the third postulate of quantum mechanics that owing to the constant value of E

(eigenvalue) the wave function y can be labeled as eigenfunction.
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Therefore, the Schrodinger equation is also called as the “eigen value equation”. Simplifying this, we can say

that
(Energy operator)(Wave function) = (Energy)(Wave function) (94)

The equation (94) is applicable to observables in the quantum mechanical world.

For three dimensional systems, like the Hamiltonian, the operator can be obtained by summing the
individual operators along three different axes. For instance, some important three-dimensional operators are:

. —h%? (9% 9% 02 (95)
T= t——+
8m2m\odx? dy? 0z2
A_h(6+6+6) (96)
P = 2ni\ox Jy 0z

The list of various important quantum mechanical ,operators in one dimension, along with their mode of

operation is given below.

Table 2. Name and symbols of various important physical properties and their corresponding quantum
mechanical operators.

Physical property Operator
Name Symbol Symbol Operation
Position X X Multiplication by x
Position squared 5 %2 Multiplication by x?
Position cubed X e Multiplication by x*
Momentum D« Dy h 0
2mi 0x
Momentum squared i pZ —h? 92
412 0x?
Kinetic energy . p? T, —h? 092
" 2m 8m2m dx?
Potential energy V(x) V(x) Multiplication by V(x)
Total ener E=T+V(x H —h? 092
gy (x) 9 v
8m?m dx?
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Besides the record of different operators presented in ‘Table 2’, there still many operators which are
extremely important like angular momentum, parity, or the step-up—step-down operators. The discussion of
every operator is beyond the scope of this book; however, a brief discussion of the essential operators in

quantum mechanics is given below.

1. Angular momentum operator: In order to understand the angular momentum operator in the quantum
mechanical world, we first need to understand the classical mechanics of one particle angular momentum. Let

us consider a particle of mass m which moves within a cartesian coordinate system with a position vector “7”.

Hence, we can say that
r=ix+jy+kz (97)

The coordinates x. y and z are the functions of time, and therefore, we can define the velocity as the time
derivative of the position vector as given below.

v=%=i%+]i—¥+k% %)
or
v=v,+v,+v, (99)
Now, since we that p = mv, we can say that
Dx = MUy, " Dy S MVy,; =~ p, = MU, (100)

The angular momentum of a particle with mass m and distance 7 from the origin is given by the following

relation.
A
4)
13
Figure 6. The angular momentum vector.
L=8xmx7# (101)
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L=px7 (102)

Equation (102) can also be written in the form of a matrix as:

i j k (103)
L=1x y Z
DPx Dy Dz
Ly =yp, —2zpy; Ly = zpy — XD Ly = XDy — YPx (104)

Where i, j, k are the unit vectors along x, y, z axis and Ly, L,, L. are the component of angular momentum along
X, y, z axis. Moreover, it is also worthy to note that the angular momentum vector is always perpendicular to
the direction of the position vector of the particle i.e. the plane in which the particle is moving.

Now since the mathematical nature of any quantum mechanical operator is dependent upon the
classical expression of the same observable, the angular momentum is not any exception. The quantum
mechanical operator for angular momentum is given below.

JRN —iﬁ(r X V).==ih(r XV) (105)
21

The angular momentum can be divided into two categories; one is orbital angular momentum (due to the orbital
motion of the particle) and the otheris'spin angular momentum (due to spin motion of the particle). Moreover,
being a vector quantity, the operator of angular momentum can also be resolved along different axes.

L="Ly+Ly+L, (106)
And we know that
. _(h a) (h 6)_h(8 8) (107)
x = YPz = 2Py =V 597/ A 2mi dyl-~ 2mi rr Zay
or
. _(h a) (h a>_h(6 6) (108)
y = ZPx —XPz = Z 21Ti 0x X 2midz)  2mi Zax va
or
. _(h a) (h 6>_h<6 a> (109)
2 = Xy T VP = X\omiay) T Y Cniox) T 2mi\Y oy~ Y ox
- lbh ) bl
=2 1\Y 3z Zay Zox Yoz xay 0x

It is also worthy to recall that equation (107) to (110) can also be reported in terms of h; or by multiplying and
dividing by 7, or both.
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2. Ladder operator: These operators are also called as step-up—step-down or rising-lowering operators. The
reason for such terminology lies in the fact that these operators can increase or decrease the eigenvalues.
Moreover, it should also be noted that this increase or decrease is always quantized in nature.

Je =T+ iy (111)
and

Je =T =iy (112)
The equation (111) and (112) represent the step-up and step-down operators respectively. These operators can
be used to increase or decrease the eigen values.

» Operator Evaluation

The operator evaluation simply means that-we need to find the result by applying the operator over a

given function. Some general examples are given-below,

i) (d/dx) (x°): In this case d/dx is the Operator'while the functionx?® is the ‘operand.

-d—x5 = 5x4 (113)
dx

ii) [(°): In this case, [ is the operator while the function x>is the operand.

fo My (114)

iii) (d*/d*) (ASine 2mvt): In this particular case, (d*/dt*)is the operator while the function (A Sin 2nvf) is the
operand.

Let the function is symbolized by y. Then, we have

y=-A.Sin 2nvt (115)
Differentiating with respect to ¢, we get
d 116
—y=A2m/ Cos 2mvt (116)
dt
Differentiating again
d2 117
Y _ _ A 4n?v? Sin 2mvt (17
dt?

The operator evaluation is frequently used as a part of the commutator calculation and will be

discussed in detail in this chapter.
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» Calculation of Resultant Operator

Sometimes the operator is simplified to another form which is easy to apply over a function. This
resultant operator is obtained by the rules of operator algebra. For instance, consider the following cases.

i) Find the resultant expression for the following operator

d \ (118)
(%)
In order to find the resultant operator, suppose a function y(x) which is used as an operand, then we can say
(&) =G ) "
dx V= dx ) \ax ™ v
or
G ) ) -
dxr e dx " dxxd}
or
(d )2 _(d )( dzp+ dx) (121)
dx N dx )\ d lpdx
T a'rh dy (122)
i N Y
(dx x) dx <X s xl/’)
d%\ A2 dy dip dx (123)
& ) RNy Ml whminkin S i
<dx x) v [x o U] fy [x dx l/)dx]
d % a2 dy -y (124)
— =2 L -
<dxx) VR gt gt Y
d \? , d? . (125)
(@) v=|2 g+ gy
Removing y from both sides, we get
(d )2_ 4, d (126)
dx) T a2 T 7
ii) Find the resultant expression for the following operator
d\ d (127)
P
In order to find the resultant operator, suppose a function y(x) which is used as operand, then we can say that
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dydy. d \ dip (128)
(+ )zl =+ )
d\ d dy  d%P
|+ )l v =g * 2
Removing y from both sides, we get
(e )L a @ (129)
x dx dx_xdx dx?

iii) Find the resultant expression for the following operator

d 2 (130)
(dx * x)

In order to find the resultant operator, suppose a function y(x) which is used as operand, then we can say that
(%) 1)) “3”
dx+x 1/J_[dx dx+x]lp
G2 [ G E Ty "

ALY TNES T TP
(e O SR =
2 WV aaiginshbute.eqnt <y
d 2 dzz,b d¢ dy / (134)
[<a+x> ]w—d s 1,[}— xa+x¢
d 3 d?y dyp -~ (135)
[(E—HC) ]1/) —d—+2x—+x Y+y

Removing v from both sides, we get

(d+>2—d2+2 4 bt (139
dx ) Tae T T ax "

iv) Find the resultant expression for the following operator

() (- ) Y

In order to find the resultant operator, suppose a function y(x) which is used as operand, then we can say that
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[( jx)(x——)]z/) (x+d)(x¢_d_¢> (138)

(R PERRRE B

dx dx = dx dx?
oo D Doty
(B lo-rons32

142
" (142)

[( dx)(x__]‘l’ [ dx dx2

Removing y from both sides, we get

d d Ay d? (143)
(B g =2 ¥

The resultant operator calculation is frequently used as a part of the commutator calculation and will

be discussed in detail in this chapter.
» Commutation Relations of Various Quantum Mechanical Operators

As we have discussed previously that one of the most fundamental properties of operator
multiplication is the commutation relation or the commutation rule. two.operators, A and B, are said to be

commutating or non-commutating depending upon the value of their commutator.
[4,8] =/AB.— BA =0 - Commutating (144)
l?] AB—BA # 0 - Non-commutating (145)

The physical significance of the commutation relations is that when two operators commute, it means they are
having a simultaneous set of eigenfunctions; and their corresponding physical properties can be calculated
simultaneously and accurately. However, if the commutator is non-zero, the respective physical properties
cannot be obtained simultaneously and accurately. Some important commutation relations are given below.

1. Commutators of some simple operators:

i) Calculate the commutator of the following

[ ] (146)
"dx

Let it be operated over a function y. We have
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o= oo
koo
.
)

ii) Calculate the commutator of the following

s

Let it be operated over a function . We have

[y.:—x]w =y f—xw—j—xw

d S dy dy
ly'dx]l’b ke gpmy £51-980%
v Ul
2 dx Y
iii) Calculate the commutator of the following
gl g4
dx-dx?
Let it be operated over a function y. We have

d d2] dd> d*d
dx’ dx? l’b_dxdlep dx? dx

or

d d>?
dx’ dx?

Ay By

T dx3  dx3

d d* ] .
dx’ dx? v=
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2. Commutators of position and linear momentum operators:

i) Find the commutator of the following

[%, D] (159)
Let it be operated over a function y. We have
(£, 0] =20 Y —Px % Y (160)
R h 0 h 0 (161)
BPe ¥ = oniax ¥ " 2niox ¥
o h oy h oY h  Ox (162)
P = o™ ox " 2mi ox T2V oz
(o T = =
N h —hiije. (163)
(%)Dx] = N th
ii) Find the commutator of the following
(2" Px] (164)
Let it be operated over a function y. We have
XD W =x" P — P X" Y (165)
h™o h 0 (166)
on o — . L AN
K™ b 2mi 0x 2 ox v
h oY il h oy h (167)
on oA — &S, n_Tr_ " n_T #£ - n-—1
(%% I = 2mi " Bx 2mic ~0x  2mi v
h (168)
on A o n—1
(27, pe 1§ = =5 —nx""1y
Removing v from both sides, we get
h (169)
SN 8 ] — _ _ an—1
(2%, px 1= —5—=n

The commutation relations between position and linear momentum can mainly be divided into three

categories as discussed below.

(a) When position and momentum are along the same axis:

[£™, P, ] = nihx™1 (170)
- P DALAL
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[ Ay, 2"] = —nihx™? (171)

and
[%,p2] = nihpy ™ (172)
[$%, %] = —nihp}™ (173)

(b) When position and momentum are along different axis:

[.8,] =0 (174)
[%,0,]=0 (175)
[9,6x] =0 (176)
[9,02] =.0 (A77)
[Z,0,] =0 (178)
|2 93]=0 (179)
(b) When positions are along the different axis:
(%3] =0 (180)
12 12hs10 (181)
154l =0 (182)
(b) When positions are along the different axis.:
[P0y 20 (183)
[P, Bzl = 0 (184)
[ﬁy, ,32] =0 (185)

3. Commutators of angular momentum operators:

i) The commutator of orbital angular momentum operators along x and y-axis.

[Ly,Ly] = LyLy —L,L, (186)
Finding the values of iny , we get
R h /@ N[ h [ @ d (187)
baly = [ﬁ(%”@)] i (5~ 52)]
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ok [( d d )( d d )} (188)
~ "2 [V Z(’)y Zox %oz
B h2<6 0 a 0 0 6+ 0 6) (189)
T 4nz\V 57 % 6x Zayzax Yoz 0z Zayxaz
__m( o0z 0* 0 0* 0 (190)
= T an2\Voxaz T %02 7 0%yx VX922 fo)yz
_ 2 0 N 02 , 0° 02 N 92 (191)
h Yox VP92 7 0%yx VX952 Zxayz
Similarly obtaining the value of Eyf,x, we get
i _{h( d 6)] h( 0 6)] (192)
vir = 27 \F o [ 3z [Zm' Y2 Z@y
/! & [< a d )( 0 i} )] (193)
a2\ ox a2\ oz “ay
T oo < T O o gy 1 e 0 Y a 8) (194)
T a2 \* 92792 Zaxzay X927 3z xazzay
| ke ALIGHANR: O T DRt (195)
T a2\ g A 0%xy X Grectcd 0zy xay 0z
_ p 92, 31k a2 = 0° 4,9 (196)
B & 54, ° da2%xy T xzazy Xay
Now putting the values of Exzy and iyzx in equation (183), we get the following.
L, = |-n2 0o, 0 0 0t , 0 (197)
oyl Yox Y92, 2 92yx VX922 Zxayz
B2 02 , 0° 02 N 02 N 0
ST d%xy oz T dzy xay
o o d (198)
= 72 (v— — y—
(L Ly] = —h (yax xay)
Taking negative sign common, we get
I o 9 (199)
2,2 _ Y
(L Ly] = (x dy ax)
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[Zx,Zy]=ih[ lh( aay %)] (200)
Ly Ly] = L, (201)

ii) The commutator of orbital angular momentum operators along y and z-axis.

[L,.L,|=L,L,—L,L, (202)
Finding the values of iyzz , we get
BN h d d h d d (203)
L= 5 (03 =25 o (5~ 53)|
h? [( ] a ) ( ] Gl >] (204)
=—-— Sx—lxs——y—
41 dx 0z dy 0x
- hz( 0, &0 o Mgp o N, 0 a) (205)
T T mz\P 5 X0y Z %52 0y “Pox Y ax Y827 ox
o 7 S L (206)
T 4n? Zay x axy I d%zy oxz 1Y azx
(info@@datalinstiedte.cqmy? 0282582 (207)
B Zay W axy i atzy D oxn Y ax

Similarly obtaining the value of izzy, we get

ii _[L(xi_ i)”ﬁ(zi_xi)] (208)
22V 2w \Moylrrex/ 12rt\” 0x” T 0z
R [( 0 (3)( 0 E))] (209)
~ Tz [Py TV ox) Pox T oz
h2 ( d o 0 N d a> (210)
xay ax ay oz Yox%ox TV ox 0z
02 92 02 N 0 0x (211)
4n2 ayx - dyz Y2 9x2 yxaxz Yoz ox
92 02 d (212)
" @"‘ ayz IREETZARAE AR >

Now putting the values of Zyiz and EZZy in equation (212), we get the following.
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[Z i ] g2 0 N 02 5 92 0 N 02 (213)
yr=zl = Z(’)y 2 dxy x d2zy 2 oxz TV ax
2 62 62 02
—|—=h2 - y2__ R -
[ h (xzayx x 0yz yzax2+yxaxz+y
R ] ] (214)
R
[Ly' L,]=-h (Z dy 62)
Taking negative sign common, we get
- 0 0 (215)
il =w(y2.0)
[yl =1 (v5;~ 75
~ . _ 0 0 (216)
[Ly, LZ] = ih [—lh (y& - Z@)]
N e T (217)
iif) The commutator of orbital angular momentum operators along z and x-axis.
0 S 218)
Finding the values of L,L, , we get
zz_[h( d G)Hh( 5] 6)] (219)
2 2mi xay Y St 2mi -9z Zay
D [< 0 6)( 0 d )] (220)
T\ 42 xay Yox)\) 3z Z(?y
B h2<6 0 ad o0 d 6+ 0 6) (221)
T xayyaz xayzay x> 3z yaxzay
R d dy N 02 02 , 0° N 92 (222)
= T anz\ "5z dy Xy 0yz Xz dy? Y oxz TV doxy
_ g2 d N 92 02 , 0° N 02 (223)
B X0z T 0yz Xz dy? Y oxz TV oxy
Similarly obtaining the value of L, L,, we get
ZE—[h< 0 O)Hh< 0 0)] (224)
¥z = oni\V oz Zay 2mi xc’)y 0x
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R [( 0 0 )( 9 0 ) (225)
T Tz |V, dy x dy ox ]
or
h2 ( 6 d d 6 0 a) (226)
Yoz Yox oy oy %oy ox
, 9? 02 0dy o (227)
47'[2 E)zy E)zx 2 ay? ' “ox c')y 2 yx dyx
62 02 N d N K (228)
6zy 6zx ) dy? Pox T oyx

Now putting the values of L,L, and L, L, in equation (218);we get the following.

5= e 0 008 o2 92 92 (229)
Zrd BN yayz ay g e axy

12 97 0% GE z, . 0 ik
Y% azy = 0zx 0y ax Zyayx

b4 W 7] 0 (230)

L VA - W N

[ Ll =20 (x 9201 ax)

Taking negative sign common, we get

R % d 0 (231)

b, IEL=T" ( — —)
s | d a (232)

[LZ, Lx] = ih [—lh (y& — Z@)]

[L, L] =L, (233)

iv) The commutator of total orbital angular momentum squared operator and orbital angular momentum along

one of the three-axis.

[1%,0,] = [E2 + 12+ I2.1,] (234)
=2L0,+1%2L,+12L,— L,I% - L,13— L,I%] (235)
=[(I3aL, - LI3)+ (I3 L, - L,1%3) + (I2L, - L,I2)] (236)
[L%,1,] = [L3,L,] + [L3 L] + [LZ L,] (237)
Now finding [L2 , L,] first, we get
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[2.0,] =121, - L,I2 (238)
=LL,L,—L,L,L, (239)
= [LaLo L, — Luly L] = [LoLale — Lel, L] (240)
= L (L, - L L] - LI - LL L @41)
= L [Lel, — Ly L] + [Lel, — L1y |Ls (242)
= L, [~ihL, | + [~ih, |s (243)
= —ihL,L, — ihLyL, = —ih[L,L, + L, L,] (244)
Similarly,
(220D MO Bpts L L2 (245)
= LA I, L (246)
= (B, L = LyLal,| — [Tl L, = L,
=Ly [Eyzz =L, Ey] i [Ezzy 2LyL, ]Z'y
25 N0 2 Y 2% I P S
= Ey [Lth ] + [Lhzx ]Zy
s ihD)Lat inLyLy = TH(L, Ly $ e, ] (247)
Similarly,
[02,1,] = 2L, — L,I2
=L,L,L,-L,L,L,
[22,L,] =0 (248)

Now putting the value of L3L,, [3 L, and LZL, in equation (237), we get

[L2,1,] = —in[L,Ly, + L,L, ] + in[L,L, + L, L,] + 0

[iZ,ZZ] =0 (249)
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, — DALAL
Buy the complete book with TOC navigation, ;
high resolution images and Copyright © Mandeep Dalal INSTITUTE

no watermark.


https://www.dalalinstitute.com/books/a-textbook-of-physical-chemistry-volume-1/

48

A Textbook of Physical Chemistry — Volume |

[?,L,] = 0;and [[?,L,] =0

(250)

Hence, the commutation relations of angular momentum operators along two different directions do not

commute with each other and hence cannot give eigenvalues simultaneously and accurately. One the other

hand, total angular momentum squared and angular momentum along one axis do commute with each other.

The commutation relations between angular momentum operators can be mainly divided into four

categories as discussed below.

(a) Orbital angular momentum commutation:

[

~

o~

x,fy] ihL,;
yr EZ] = ihL,;
- Ex] ih y3

L

(b) Spin angular momentum commutation.
[snsypdada

[85,S, | = 1Sy

(5, SA/epins,;

[5%,8;]=.0;
[§2'Sy] =0;
[52,8,] =0;

(c) Total angular momentum commutation:
[/ Jy| = i
Uy 2] = i)y;
[/ Jx] = iy
[/2.)x] = 0;

L322} =

b viih=0
TR
(S5} S )= SR,

[Sa S8 —ihSy
[S..83=0
[5,,8%] =0
[S2,5%] =

Uy.Jx] = =i,
Uz Jy] = =i/,
Ve Jz] = =it
U J?] = 0
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zn]=0 [LJ%]=0 (267)
2] =0 [J.J*]=0 (268)
(d) Total angular momentum commutation:
[L.,5:]=0; [Sx.L,]=0 (263)
[Lx,Sy]=0;  [S), L] =0 (264)
[L..5.]=0; [S,L,]=0 (265)
[Z,.8] =0, [S.L,]=0 (266)
[£,,5,] =@ =S L,] =0 (267)
[Lye X5 OAC [t ] = 0 (268)
15,540,  [Soh] =4 (269)
LSyl =0 [SnL] =0 (270)
[£5.5,} =0\ {3}, 1,] = 0 @71)
4. Commutators of Ladder operators:
i) Find the commutator of the followitig
2.1 (272)
Let
U2 L =20 + iy (273)
=2+ iy) = U + Jy)J? (274)
= 2L + 12Ty — JoJ? = S (275)
= [ = L] + /%]y — /%] (276)
=2 L]+ il )] (277)
=0+i(0)=0 (278)
Hence
[/ Js]=0 (279)
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Similarly
[/2J-]=0 (280)
ii) Find the commutator of the following
Vi Jz] (281)
Let
itz ] =[x + iy )] (282)
= (e +ih))z = J.Ux + i) (283)
= oo + i ] = Tobx = 2y (284)
= olz wdedy ik ), — Uy (285)
=[N — Lkl ), =Ty (286)
=il T (287)
= <ihfy + i(infy) =—l/; — h/y (288)
=Jh(f; +))) = <hjfy (289)
D i (290)
Similarly
VAR AT (291)
iii) Find the commutator of the following
-] (292)
Let
Ui d-1= Ux + 1) Ux — i) = U — ify) Ux + i) (293)
= e = Uy + iyfx + IyJy = Uil + iy = i) + 1yJy) (294)
= b = Udy + Uyle + IJy = T = Undy + Uyfx — Iy Jy (295)
= =il fy + Uyfx — Uy + i Jx (296)
= —i[Jufy = JyJx] + il Jx = Iy ] (297)
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= =il Jy] + il Ji] (298)
= —i[ihf,] + i[~ih],] (299)
= hf, +hf, = 21, (300)

The commutation relations between angular-momentum and Ladder operators can be mainly divided

into three categories as discussed below.

(a) Ladder operator and total angular momentum commutation:
[]"Z’j_‘_] = 0; [i+rj2] =0
2Jj-1=0 [J.J*]=0

(b) Ladder operator and spin angular momentum commutation:
[$2,8:]=0; [$..5% =0
[5%,8_]=0; [S$_5%=
[S:,$,] =-hSy;  [S.5,]=hS,
[5.,8,] =nS_; [5,5_]=-hS_

5.5 =208, [$..5,] = —2nS,
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¢ Hermitian Operators — Elementary Ideas, Quantum Mechanical Operator

for Linear Momentum, Angular Momentum and Energy as Hermitian
Operator

It is a quite well-known fact that all the physical properties are actually real quantities, and therefore
are bound to have real values. It means that any operator which is used to represent a physical property must
yield real values. In this section, we will discuss the elementary idea of Hermitian operators (named in honor
of a great mathematician Charles Hermite), and will also prove that many important operators in quantum
mechanics like linear momentum, angular momentum and Hamiltonian are Hermitian in nature.

» Elementary Idea of Hermitian Operator

Every physical property must have real eigen or expectation values, which therefore implies that the
corresponding operators should have some special characteristics. One of the most important special
characteristics includes a feature that the Hermitian conjugate of such an operator should be itself. In other
words, if the Hermitian conjugate of an operator is itself, the operator is called as Hermitian; however, if the
Hermitian conjugate of an operator is equal to its negative expression, the operator is called as anti-Hermitian
or skew-Hermitian. Mathematically, we can say that

if At = 4; Ais Hermitian (316)
if AT = —4; A is anti- Hermitian (317)

Where A is an operator whose Hermitian conjugate is represented by 4.

However, the obvious question regarding the aforementioned definition would be “what is a
Hermitian conjugate and how is it obtained”. The answer is “the operator A" will be called as the Hermitian
conjugate (or adjoint) of operator A4 if the operation of 4" on the complex conjugate of function y gives the
same result as when the A is operated over y”’. Mathematically, we can say that

+oo (318)
WlAlp) = f W0 Ap(x)dx = (PlAw) = (ATp]y)

or

(AToly) = (play) (319)
1. Hermitian conjugates of different operators: The Hermitian conjugates of different operators can be
studied in three different categories.
i) Hermitian conjugates of quantum mechanical operators:

Let QO be any quantum mechanical operator, then by the definition of Hermitian conjugates operator,

we have the following condition.

: DALAL
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(0lQy) = (QTp|w) (320)
If Q is the momentum operator, then we can proceed as discussed below.
[ wpawax = [ wpwax G21)
U (322)
[ ) v = [ (zg) e
t T t (323)
[v(mz) wor=[vGm) (&) ver
T (324)
[om) wee=[u(-0) (-R)ve
i (325)
[PV = W) e

Therefore, we can say that the Hermitian conjugate of the linear momentum operator is itself, and hence it is
a Hermitian operator. Now-from-the-most primitive-definition-of Hermitian-operators; that all operators which
correspond to observable quantities, we can say that the Hermitian conjugates-of the following operator are

themselves.
Qperator Hermitian conjugate
X X
%2 %2
Px Dx
px Px
T, T
V(x) V(x)
q a

ii) Hermitian conjugates of a constant operator:

There are some operators which are complex numbers. The Hermitian conjugates of such operators
are actually their complex conjugates. Let we have the operator A

A=a+ib (326)
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and since the definition of Hermitian operator is
(plAy) = (ATo|y) (327)
gives the integer as

(pl(a +ib)y) = ((a — ib)o|) = (a + ib){p[P) (328)

Hence, the Hermitian conjugates of constant operators are their complex conjugates. The Hermitian conjugates
of some operators are given below.

Operator Hermitian conjugate
(a +ib) (a +ib)T = (a—ib)
(+ib) (+ib)T = (—ib)

(+3)

iii) Hermitian conjugates of a mathematical-operator:

(+3) =(-3)

The Hermitian conjugates-of mathematical-operators-can be obtained by obtaining their respective
integrals as discussed below. Let we have a mathematical operator 4

LUy (326)
A= —
dx

We use the following integral to derive the result

[

— 00

Integrating the above equation by part, we get

<"’| ;_le) = [p" (DY (x)] - fo d‘P;)Ex) P dx (328)
=0~ (c;i_x‘pl‘/’> (329)
- (c?_x"’|‘p> (330)

Hence, the Hermitian conjugate of d/dx operator is —d/dx. Similarly, we can prove that the Hermitian conjugate
of d?/dx?* is d*/dx>.
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2. Properties of Hermitian conjugates: From the definition and properties of scalar product, adjoints or
Hermitian conjugate show the following properties.

i) Let C a constant and A4 as an operator.
(cAHt =crAf (331)
For example

c ot it ot (332)
Gz -6 @)

(i3 = () (5) -

(i G )T ~i-d (334)
4.0x)0_ 4 ox
ii) Let 4 and B as two operators.
(A+B)TI =A4N#H BT (335)
For example
ir 82\ @ \LO A @30 (336)
A r A e b
NI 9 Gk (337)
(a*w) okt g <W>
o a2\t ANE (338)
<a_+a_> - (‘&*W)
iii) Let A and B as two operators, then
(AB)T = ATBT (339)

For example

a a2\

o 92\'

t a2zt (340)
() (52)

2 (341)
(-5 ()
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d 62 1'_ a3 (342)
(o) -(-35)

( A+)* -4 (343)

iv) Let A be the operators, then

For example

(6)TT_<6> (344)
ox ~ \ox

It should also be noted that the multiplication to an anti-hermitian operator by i makes it Hermitian, while the
vice-versa is also equally true for adjoints.

v) For any operator 4 and its adjoint, the product {44 ") is Hermitian: For instance

(6)( a>_ 02 (343)
%)\, 8%y 02
vi) For any operator A and-its-adjoint, the'sum-(4+4")-is-Hermitian. For-instance

(x + x*) b=/) (343)

vii) For any operator 4 and its adjoint, then 44'+A"4 is Hermitian, For, instance

(i3)(@3)1 + (i3)7(13) =.(i3)(=i3) + (—i3)(i3y=9 49 =18 (343)

3. Characterization of Hermitian operator: We know that the average value of any operator (say 4) in
quantum mechanics is calculated by the equation given below.

i = [vdvas (344
Where y is the wave function representing any quantum mechanical state and " is its complexes conjugate.

Now because of the fact that the average value of any physical observable must be a real value, we can say
that the operator used in equation (344) must follow the following condition.

A=A (345)
N A * 4
f Y Apdx = [ f w*Awdx] (346)
* 2 *\*x[ A * 347
fl/)Al/)dxzf(ll))(Alp)dx (347)
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[ v dpax = [ w(ap) ax (349)

Every linear operator that satisfies the equation (348) for all quantum-mechanically acceptable wave functions
is called the Hermitian operator.
Besides the form given by equation (348), one more popular definition of a Hermitian operator is

also given below.

[ ragax = [ g(af) ax (349)

From the equation, we can state that a Hermitian operator must fulfill the condition for the well-behaved
functions fand g. It can be clearly seen that on the left side of the equation (349), 4 is operated over the function
@; while on the right side, the 4 is operated over the function /. However, if we put f= g, the equation (349) is
also reduced to equation (348); indicating that both definitions are correct.

4. Properties of Hermitian operators: The important properties of Hermitian operators are discussed below.
i) The eigenvalues of Hermitian operators are.always real:

Let 4 be a Hermitian operator’ with a well-behaved ‘wavefunction y representing a quantum

mechanical state, then wecan say that

Ay =ay (350)

Each side of equation (350) can be exptessed.as an imaginary and a real part as well; with left-hand real part
equal to the right-hand real part, while left side imaginary part equal to.right imaginary one. After taking the
complex conjugate of equation (350), the imaginary parts would reverse sign but still holding the condition of
equivalence.

A*l/)* L a*l/)* (351)
Multiplying the equation (350) by " and integrating over the whole configurational space, we get

[ v avax = a [ yruax (352)

Similarly, multiplying the equation (351) by  and integrating over the whole configurational space, we get

f YA YPrdx = a* f Yyrdx (353)

Now because left-hand sides of equation (352) and (353) are equal to each other (owing to the Hermitian nature

of the operator), the right-hand sides are also equivalent; therefore, we can say that

a f Yyprdx =a f Prpdx (354)

, — DALAL
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0=(a—a") J Y Ydx (355)

Since the wave function is a square-integrable, the integral part of the equation (355) cannot be zero and left
us with the only possibility given blow.
(a—a") =0 (356)
a=a" (357)

The physical interpretation of the result given by equation (357) is that a must be real in order to yield zero
from equation (356).

ii) Non-degenerate eigenfunctions of Hermitian operators are always orthogonal to each other:

Let y,, and y, be two square-integrable eigenfunctions of a Hermitian operator A; therefore, we say
AP = af i (358)
also
Ay ="ay Py, (359)
Multiplying the equation (358).by y " and integrating over.the whole configurational space, we get

{00, [l (360)

Similarly, multiplying the equation (359) by w,, and integrating over the:whole configurational space, we get

J%ﬁ%mz@ﬂ%mm (361)

Now because left-hand sides of equation (360).and (361) are equal to each other (owing to the Hermitian nature

of the operator), the right-hand sides are also equivalent; therefore, we can say that

a, f Yrhmdx = a, f Ymrdx (362)

(- a3) f b i = 0 (363)

Since the wave functions used are non-degenerate i.e. a; # az; the only possibility we are left with for the

equation to be true is given below.

. 364
[ mrax =0 (364
Hence, we can say that y,, and w, are definitely orthogonal to each other.
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iii) If two Hermitian operators commute, their product is also a Hermitian operator:

Let y; and w: be two well-behaved functions; while A and B as two Hermitian operators. Therefore,
we can say that

[ widpsax (369
Since A is Hermitian, we can say that
[ widspsax = [wia(B,)ax (366)
[ drwibpadx = [ wid(By2)dx (67
Since B is also Hermitian, therefore
[ @w)Biax = | B R,z (369
From equation (366) and (368), we get
| B dx [ By At s 6
If the operator A and B commute with each other, we have
AB'= BA _or. AB*=PB*A" (370)
Therefore, equation (369) becomes
(371)

j DHAB Y, d L f A Brpidx

Which is the condition for the product operator to act as Hermitian.
iv) If two Hermitian operators do not commute, their commutator operator is anti-Hermitian in nature:

Let A and B as two Hermitian operators; therefore, we can say that their commutation must follow
the following condition.

[4,8] = (4B)" - (BA)' (372)
or
[4,8] = A'B* — B*A* = —(B"A" — ") (373)
or
, — DALAL
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= —[B,A] (374)

B,Al (375)

h (376)

The commutator i is antihermitian in nature.
» The Linear Momentum Operator as Hermitian

In order to prove the linear momentum operator as the Hermitian, we must find its Hermitian

conjugate first. The general expression of linear momentum operator is

h o (377)

Ox T 2kiaz

Let }5}; be the Hermitian conjugate which:can be calculated as-follows:

t g\t (378)
T=d
or
P=t—27) o
or
) ) -

Comparing equation (377) and (380), we can see that the Hermitian conjugate of linear momentum operator is

exactly equal to the linear momentum operator i.e. ﬁ; = P,; proving that it is defiantly a Hermitian operator.
» The Angular Momentum Operator as Hermitian

In order to prove the angular momentum operator as Hermitian, we must find its Hermitian conjugate
first. The general expression of the angular momentum operator is

i h [( 9] a)+< 0 c’))_l_( 0 6)] (381)
~ 2mi |\ 3z Zay Zox Yoz xc’)y dx

Let f}fc be the Hermitian conjugate which can be calculated as follows:
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t (382)
1[0 s D) () 2]
d h 0 h 0 h 0 h
z[ﬁ Yoz 2mi’ay Vomi’ox 2mit oz 2mi” @_ﬁyax]
or
~ f f t t (383)
L= () 0 (3) - () @' () +(=) @)
t t t T
(an) ()T( ) (2’7ln> ()T( ) _(2}7ln> 2 (66x>
or
1= (@m0 otz
&) DR o) -5
h
1] U]
or
o b

Comparing equation (381) and (386), we can see that the Hermitian conjugate of the angular momentum
operator is exactly equal to the angular momentum operator i.e. LT = L; proving that it is defiantly a Hermitian
operator.

» The Hamiltonian or Energy Operator as Hermitian
In order to prove the energy operator as Hermitian, we must find its Hermitian conjugate first. The
general expression of the energy operator is

—h% 92 (387)

H 8m2m 0x2 V)

Let A be the Hermitian conjugate which can be calculated as follows:
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. _h2 32 t (388)
H =|:—8T[2mW+V(x):|
or
o [—h* 9 0 f (389)
H _[8ﬂ2maa+v(x)]
_ —h2 t F] T P t (390)
1= () (52) () + ooy
or
x —h? 0 0 (391)
1= () (- 52) (- 35) + )
v —h? 9% (392)
HT = 87‘[2mW+V(x)

Comparing equation (387) and (392), we can see that the Hermitian conjugate of energy operator is exactly

equal to the energy operator i.e. HT = H; proving that it is defiantly a Hermitian operator.

% The Average Value of the Square of Hermitian Operators

The expectation value of the square of every Hermitian operator is always positive. In other words,
we can say that if 4 is a Hermitian operator, then

(A4%) >0 (393)
This can be proved by taking a well-behaved function y as discussed below.

[ A% pdr (394)
Sy pde

The right-hand side of equation (394) will be positive only if the numerator as well as denominator, both are

(4%) =

either positive or negative. Since the wave-function is well-behaved (normalized), the value of denominator is

fw*wdr =1 (395)

Since the denominator is positive, the numerator must also be positive. Now owing to the Hermitian nature of

operator 4, we can evaluate the numerator as given below.
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j ' A2t = f Y AN dr (396)
 [warmps (397)

or
~ [ 1412 ar (%8)

Hence, the value of numerator given by equation (398) is greater than zero i.e. positive, making the average
value of the square of the Hermitian operator (4) also positive.

+ Commuting Operators and Uncertainty Principle (x & p; E & 1)

One of the most important properties of operator multiplication is the commutation relation or the
commutation rule. Two operators, A and B, are said to be commutating or non-commutating depending upon
the magnitude of their commutator.

[4,B] = AB — BA =0 - Commutating (399)

and

oo

[4,B] = AB — BA # 0 — Non-commutating (400)

The physical significance of the commutation relations implies in the fact that when two operators commute,
they possess simultaneous set of eigenfunctions; and their respective physical properties can be evaluated
simultaneously and accurately. However, if the commutator is non-zero, the respective physical properties
cannot be obtained simultaneously and accurately; which is actually the popular uncertainty principal. Two of
the most common uncertainty systems; position-momentum and energy-time; can also be proved from

commutation relations.
» Position-Momentum Uncertainty (x & p)

The position-momentum uncertainty can be justified only if the commutation of their operators is
non-zero. Therefore, we need to find the following.

[%, Px] (401)
Let it be operated over a function y. We have
[0 =20 — DX Y (402)
or
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(£, = x =y (403)
[f,ﬁx]¢=%xg—f—%xz_f _%wg_i (404)
(%5, 10 = —5t) (405)

£, ]= — o= 2= in (406)

Equation (406) proves that we cannot determine the position and momentum of a particle along one axis
simultaneously and accurately.

» Energy-Time Uncertainty (E & t)

The energy-time uncertainty can be justified ‘only if the commutation of their operators is non-zero.
Therefore, we need to find the following.

[&E] (407)
Let it be operated over a function (7). We have
[LElW=tEy—ELy (408)
or
z R0 h /0 (409)
O agion . i g
o R O W DaYST Kot (410)
6 E W= o 5 ¥ om o —mi Vo
. A h (411)
tLE=——
[ ]l/) 27111/)
. A h (412)
tEl=——
[ ] 2mi
o hi (413)
tE]=—
[LE]=o-
[£,E] = in (414)

The equation (412) proves that higher the lifetime of the state lower will be energy fluctuation i.e. uncertainty
AE, and the vice-versa is also true.
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% Schrodinger Wave Equation for a Particle in One Dimensional Box

In the first section of this chapter, we discussed the postulates of quantum mechanics i.e. the step-by-
step procedure to solve a quantum mechanical problem. Now it’s the time to implement those rules to the
simplest quantum mechanical problem i.e. particle in a one-dimensional box. Consider a particle trapped in a
one-dimensional box of length “a”, which means that this particle can travel in only one direction only, say
along x-axis. The potential inside the box is V, while outside to the box it is infinite.

Figure 7. The particle in a one-dimensional box.

One other popular depiction of the particle in a one-dimensional box is also given in which the potential is
shown vertically while the displacement is projected along the horizontal line.

A A

Figure 8. The second representation particle in a one-dimensional box.

So far we have considered a quantum mechanical system of a particle trapped in a one-dimensional box. Now
suppose that we need to find various physical properties associated with different states of this system. Had it
been a classical system, we would use simple formulas from classical mechanics to determine the value of
different physical properties. However, being a quantum mechanical system, we cannot use those expressions
because they would give irrational results. Therefore, we need to use the postulates of quantum mechanics to
evaluate various physical properties.

Let y be the function that describes all the states of the particle in a one-dimensional box. At this
point we have no information about the exact mathematical expression of y; nevertheless, we know that there
is one operator that does not need the absolute expression of wave function but uses the symbolic form only,
the Hamiltonian operator. The operation of Hamiltonian operator over this symbolic form can be rearranged
to give to construct the Schrodinger wave equation; and we all know that the wave function as well the energy,

both are the obtained as this second-order differential equation is solved. Mathematically, we can say that
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Y = Ey (415)
After putting the value of one-dimensional Hamiltonian in equation (415), we get
L B (416)
8m2m dx? v=Ey
or
—h? 0%y (417)
8m2m dx? VY =Ey
—h? 0%y (418)
—+VY—Eyp=0
8m2m dx? VY- EY
621/}+87T2mE 8n2mV . (419)
57" i ez TV,
or
0% ks 8mim (E — V) 20 (420)
0x2——h? V=

The above-mentioned second’order differential equation is the Schrodinger wave equation for a particle
moving along one dimension only. Since the conditions outside and inside the box are different, the equation
(420) must be solved separately for both cases:

1. The solution of Schrodinger wave equation_for outside the box: After putting the value of potential
outside the box in equation (420)1.e. V=0, we get
02!, 8mim (421)

F T T L

Since E is negligible in comparison to the oo, the above equation becomes

0%y (422)
__ _ 001/) =0
0x2
K (423)
b = 5oz
2 424

The physical significance of the equation (424) is that the particle cannot go outside the box, and is always
reflected back when it strikes the boundaries. In other words, as the function describing the existence of

particles is zero outside the box, the particle cannot exist outside the box.
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2. Solution of Schrodinger wave equation for inside the box: After putting the value of potential inside the
box in equation (420) i.e. V=0, we get

0%y N 8m?m (E — 0)p = 0 (425)
ax2 = h? V=
or
0?2 8m?mE 426
oW, b=0 (426)
0x2 h2
Now consider
K2 = 8m’mE (427)
h2

After using the value from equation (427).in equation (420), we get

%Y (428)
—+k*h =0
ax? et 43
The general solution of the above equation is
W =ASinkx + B Cos kx (429)

Hence, from just the symbolic form we have obtained some kind of'expression for the wave function defining
quantum mechanical states. However, ‘the function given'by equation' (429) cannot be used to find different
physical properties or the nature of-corresponding quantum mechanical states. The reason is that this
expression does have some unknown parameters like 4, B and k. Simee the function describing any quantum
mechanical state must be single-valued, finite. and continuous; the function y must also follow these conditions
to become a “wave-function”. Therefore, these boundary conditions are fulfilled only if the magnitude of y is
zero at the start and at the end of the box (function outside is-zeto).

i) The first boundary condition: y must vanish when x = 0 i.e.

0 = A Sin k(0) + B Cos k(0) (430)
0 =0+ B Cos k(0) (431)
B=0 (432)

So, the function vy is acceptable only if the value of the constant B is zero. After putting the value of B in
equation (429), we get

Y =ASinkx + (0) Cos kx (433)
Y = ASinkx (434)
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ii) The second boundary condition: v must vanish when x = q, i.e.,

0=ASinka (435)
Sinka=20 (436)

Moreover, as we know that
Sin0=0 or Sin0r =0 (437)
Sin180=0 or Sinlr =0 (438)
Sin360 =0 or Sin2n =0 (439)
Sin540 =0 or Sin3n =0 (440)

or

Sin'nmw =0 (441)

Where n=0, 1, 2, 3,4, 5 .... 0. Comparing equation (436) and equation (441), we conclude that

Sinka = Sinnt =0 (442)
Which eventually means that
ka = nm (443)
k = e (444)
a

After putting the value of & in equation (434), we get

nmx

The only parameters that is still unknown in equation (445) is A, which can also be obtained by the condition
of normalization i.e. the function must define the state completely. Therefore, we can say that

a a
(446)
2 _ g2 o2 (T
fl,l) =4 fSln(a)—l
0 0
221 (447)
2
) ) (448)
A2 =— or A= |-
a a
After putting the value of 4 in equation (445), we get
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2 nmx (449)
= |= Sin——
P - in o

Since the function y also depends upon the discrete variable #, it is better to write the above equation given as

2 nmx (430)
= |= Sin—
Yn 7 in »

The equation (450) represents all the quantum mechanical states of a particle in one-dimensional box. We can

obtain functions for individual states just by putting different values of “n” allowed by the boundary conditions.

For first quantum mechanical state i.e n = 1

i 25- - (451)
Y= T ma

For second quantum mechanical state i.e.n'= 2

2 27X (452)
= TSI
W, N in 1

- 25' 3mx (453)
Yz = a in *

Similarly, we can write the expression for y4, s, W and so on. It is also worthy to note that even though the n

For third quantum mechanical state i.c 7 = 3

= 0 is permitted by the boundary condition, we still didn’t use itin equation (450); which is obviously because
it makes the whole function to collapse to zero.

One of the most remarkable results of this procedure that we have not discussed yet is the correlation
of equation (427) and equation (444).

, 8m*mE _n*m? (454)
_ n?h? (455)
" 8ma?

The energy of different quantum mechanical states can be obtained by putting n = 1, 2, 3.... «© in equation
(455). Hence, we have obtained the wave-function as well as the energy for a particle in one-dimensional box.
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¢ Evaluation of Average Position, Average Momentum and Determination of
Uncertainty in Position and Momentum and Hence Heisenberg’s
Uncertainty Principle

The third postulate of quantum mechanics states that when the wave-function of a particular quantum
mechanical state is multiplied by the operator of an observable quantity, we get a real value multiplied by the
wave function itself. However, the value obtained this way can be constant or variable. Mathematically, the
constant value of the observable quantity can be reported directly, and the function is called an eigenfunction
of the operator under consideration. If the value of the physical property obtained after multiplying the wave
function by the corresponding operator is variable i.e. non-eigen, the value can be reported only after averaging
it over the whole configurational space.

_$yYrOpdr (456)
ST Gypdr

Since the wave function v is normalized, the denominator becomes unity; therefore, equation (456) is reduced
to the following

~ 457
<a>=3€1,b*01,bdr (457)
Since the operation by the Hamiltonian over the symbolic form has already given the absolute expressions for
different quantum mechanical states, now we can operate other operators to evaluate their average values. In
this section, we will determine the average values of position, position-squared, momentum and momentum-
squared; which in turn will be used to prove the Heisenberg’s uncertainty finally.

» Evaluation of Average Position

The quantum mechanical operator for the position of a particle in one-dimensional is X; while the
general form of wave function is

2 nmwx (458)
Y, = p SinT
Using this in equation (457), we get
<x>=5g1,b*x¢dr (459)
or
<x>=3€x¢2dx (460)
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¢ 2 nmwx ¢ nmwx (461)
<x>= fx. —Sin? (—)dx =—foin2 (—)dx
a
0 0
5 ¢ 11 Cos (Zn;'[x) (462)
= —J X dx
a 2
0
1 ¢ 2nmx (463)
= —f (x —x Cos ) X
a
0
a (464)

1 ¢ 2nmx
=—dex—fxCos( )dx]
a a
0 0
AT a® 4 1,0 (465)
“al 2 2

» Evaluation of Average Position-Squared

The quantum fechanical operator for the position-sqiiared-of 4 patticle inl one-dimensional is £2;
Using this in equation (457), we get

<x2>=§1/)*x21/)dx (466)
a a
2 nnx 2 nmx (467)
<x?>= j xZ 4= Sin> (—) dx = —J x2%.Sin? (—) dx
a a a a
0 0
2NTX 468
2 o 2 1—- Cos( 7 ) (468)
= —fx dx
a 2
0
2[a3 a® | 1[a® a3 (469)
T al6  4n?m?| al|3 2n2m2
a? a? (470)
3 2n?m?

» Evaluation of Average Momentum

The quantum mechanical operator for the position-squared of a particle in one-dimensional is P,;
Using this in equation (457), we get
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471)
<Px> jglp 2T Lax

< >_fa ZS' (nﬂx) h 0 25_ (nnx) p (472)
Px == e 2miox | |22 g X
o |

= % %] f Sin (%) (%) 0s (@) dx @)
0
210 [ s (222 cos (2 e
0
<pPy>=0 (475)

» Evaluation of Average Momentum-Squared

The quantum mechanical operator for the position=squared of particle in one-dimensional is pZ;
Using this in equation (457), we get

4x ] (476)
S ‘ 25_ nix h?% 92 25_ e f (477)
TSI Mooy |0 &
0
‘ nnx L7 (478)
4712 me ( )( ) (T)]dx
0
2 aS me 479)
4n2 f in?
0
n2h? — (480)
_ N G
oPE me ( )dx
0
B f 1 cos ()] @s1)
" 243 2 x
0
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2n7'tx) a (482)

n2h2 x—Sin( 7

2a3 2nm

a 0

or

- ) -

or

n2h? (484)
4q2

<pZ>=

» The Heisenberg’s Uncertainty

In order to prove the Heisenberg’s uncertainty principle from for the quantum mechanical system of
a particle in one-dimensional box, we firstneed to find the uncertainties in position and momentum. Once both
uncertainties are known, we can simply multiply both to yield-final result.

1. Uncertainty in position: The uncertainty in position is simply the difference between the square root of the
uncertainty in the position-squared. Mathematically, we can say that

A = (<x? > —< xR (485)

After putting the values of average position‘and position-squared from equation (465) and (470) in equation
(485), we get

a2 e a2 (486)
| et I O
or
a> a> 1/2 (487
Ax = | - 2
x [(12 2n2n2>
or
Ay — (1 1 )1/2 (488)
Y= N\12 7 2nen2

2. Uncertainty in momentum: The uncertainty in momentum is simply the square root of the difference
between the uncertainty in momentum and uncertainty in the momentum-squared. Mathematically, we can say
that
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Apy = (K pE > —< py >H)? (489)

After putting the values of average position and position-squared from equation (475) and (484) in equation
(489), we get

n2h? 1/2 (490)
_ 2
Apx_[<4a2>_(0)]
or
_ nh (491)
Apy = a

Now multiplying equation (488) and (491), we get

1 1 Y21 /nh (492)
v pr = a5 S5i2) ((30)
or
nhyl 1,2 (493)
[2 (E \ annz)
Multiply and divide the above equation by 2#m
N _nh ZnTr(l 1 )1/2 (493)
P = o \12. .. 2n2n?
or
mi 1" a2 Vin2p2yH? (494)
T2 2niw\~ 42~ — 2n2m2
or
h /n2m2 1/2 (495)
Ax.Ap, = — -2
X OPx 4n( 3 >

Since n’n%/3 is always greater than 2, we can conclude that

h (496)
Ax. A —

Which is the famous Heisenberg’s uncertainty principle.
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¢ Pictorial Representation of the Wave Equation of a Particle in One
Dimensional Box and Its Influence on the Kinetic Energy of the Particle in
Each Successive Quantum Level

The solution of the Schrodinger wave equation for a one-dimensional box gives the wave function as
well as the energy of the system. The general form of wave-function representing various quantum mechanical
states is given below.

|2 Si nmx (497)
Yy = 7 in »
The energy of the system is given by equation (498) as:
n?h? (498)

" 8ma?

The general depiction of a particle trapped in a one-dimensional box with zero potential inside, along with the
conditions outside, is shown below.

V=00 Yoo
A

V (x)

Figure 9. The graphical and pictorial representation of various wave-functions of the particle trapped in a

one-dimensional box.
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The pictorial representation of the wave-functions in different quantum mechanical states and the
corresponding energies are shown below.

+
Ya > o 4mx 164
-~ - v = A2 Sin—— Bi=
l’ ~\ I' ~\ l/4 a a 4 2
K % X ) 8ma
] Ay ' 4 AY
F g Ay ’ ‘
el & & = 1
A ’ A Y ’
\\ I' \‘ 'la
Y% e s 5t R E R >
T v e 0 X a
'z
+
Z] 5 3nx on?
JPETIN et ‘//3:\/;‘9”1_ E= 5
. L, 8ma
"' \\ Il' ‘\
0 . # ===~ T T |
.. a
£ 587 (()- ----------------------------------- >
X a
¥
+
V2 K. 2mx 3 4h?
'o‘ ..... s d ‘//2 A3 Z a EZ - 8mg2
. S » X
0 g ' (-080 o) | | -
o a
Y A 1] N P g e g >
S=a = s = 0 X a
¥
+
& 27 sin 2 — Vs
"""""""""""""" N - i 7" B = T
o ma
e [
a
6— ----------------------------------- >
X a
-

Figure 10. The graphical and pictorial representation of various wave-functions of the particle trapped in a
one-dimensional box.

It can be seen clearly from the figure given above that as the number of nodes in wave-function defining a

particular quantum mechanical state increases, the energy of the state also increases.

Furthermore, we can also comment on the symmetry of different wave functions w.r.t the center of
the box. The symmetry of different states can be classified mainly into two categories as given below.
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Symmetric = Even function = Y,44

and

Antisymmetric — 0dd function = Yepen

Hence, function like w1, w3, s are symmetric while y», w4, 6 are antisymmetric. Some of the important results

wavefunction and energy analysis for the particle in a one-dimensional box are listed below.

» Quantization of Energy

Owing to the discrete domain of n i.e. 1, 2, 3 .... oo; the kinetic energy associated with the particle,
that is trapped in a one-dimensional box, can also have discrete or quantized values only. Therefore, the

quantized variable is also popularly called as the “quantum number.

A
Es.=
n=>5 5
5
n=4
>
2o
Q
= By =
M n=73 :
/,T::
n=2
n=1 Ey=

25h?

-
8ma-*

1 6h>

8nia*

9h?

Sma*
4h?
8ma’
1h?

8Sma*

-
t

Figure 11. The quantized or discrete energy levels a particle of mass m, confined in a one-dimensional box

of length a.

It is also worthy to note that the energy gap between successive energy levels shows a linear divergence with
the increasing value of the quantum number n. Moreover, the energy of particle also depends inversely upon
the mass and the box length; which eventually means that the energy levels would become continuous if the

mass or length of the box becomes very large, proving the Bohr’s correspondence principle.
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» Non-Quantization of the Energy of the Particle

If the walls of the box are removed, the boundary conditions will no longer be applicable, and the
particle would become free to move. In other words, the constant A, B and & can have any value; and therefore,
states of the particle are not quantized anymore. The general expression for the energy of the particle is

_ n?h? (498)
"~ 8ma?

n

Hence, in such a case, a freely moving particle like an electron has restrictions and gives a continuous energy
spectrum.

» Box length and the Wave Function at the Walls

We have already studied that the magnitude of the wave function at the ends of the box must be equal
to zero to maintain its continuity. This is possible only-if the length of the box is an integral multiple of half of
the wavelength. This can be proved as

nZh? (499)
" 8ma?
Also
1 m2v? 2 500
E=-mv?= L 4 (500)
2 2m 2m

Using the de-Brogli relation (A = /2/p) in equation (500), we ‘get

BAN (/P12 B2 (501)
2m = =2m 2mA2

Now from equation (499) and (501), we-conclude

n2h? = 2 (502)
8ma? 2mA?
or
n? 1 (503)
4q2 ~ )2
or
A 504
a=n(3) o

This result of equation (504) also proves that the number of nodes in nth quantum mechanical state are n—1.
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» The Probability Density

The wave density of simply the probability density in the one-dimensional box is not the same at all
the points. It is more noticeable when the quantum number defining the state is small. However, it becomes
more and more uniform as 7 increases.

2
‘//4 #TIN X i S ST l//2= z Sln24—nx
'l \‘ ,l \\ 'l “ ’O \\ 4 a a
’ AY ’ A ’ Ay , A Y
' 4 ‘ ‘ A & A ’ A
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Figure 12. The graphical and pictorial representation of the probability density of a particle with mass m
and confined in a one-dimensional box of length a.

The increasing uniformity of with increasing value of » is in accordance with the Bohr’s
correspondence principle which states that the results of quantum mechanics approach classical values at very
high quantum numbers.
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% Lowest Energy of the Particle

As we have already discussed that the wave function and energy, both are obtained as the solution of
the Schrodinger wave equation for a particle in a one-dimensional box. The general forms of wave-function

and energy for various quantum mechanical states are given below.

2  nmx n?h?
Y, = p SlnT and E, = P

We can write the expressions for yi, 2, V3, W4, Ws, Weand so on; however, it is also worthy to note that even
though the n = 0 is permitted by the boundary condition, we cannot use it because this would make the whole

(505)

function to collapse to zero.

A
o 25k
Vs ° 8ma*
. 164
Wy ! 8ma*
23
5 B on?
= 72 . 8Sma*
g 4h?
2 2
v 8ma
& 112
4 =
: 1 8ma? _

Figure 13. All the energy levels a particle in a one-dimensional box of including the “lowest energy of the
particle”.
Hence, the minimum acceptable value of the quantum number # is 1 rather than 0; which makes the minimum
energy of the particle non-zero.
h? (506)

E,=——
1™ 8ma?

DALAL

Copyright © Mandeep Dalal INSTITUTE


https://www.dalalinstitute.com/books/a-textbook-of-physical-chemistry-volume-1/

CHAPTER 1 Quantum Mechanics — | 81

This non-zero value is popularly called as the zero-point energy and is a function of the mass of the particle

and length of the box.
| et "
2. 2 5T
W = Sin =
: - [
a
D e e T >
0 X a
4!

Figure 14. The plot of the wave function (left) and probability for the lowest energy state a particle in one-

trapped in dimensional box.

Hence, in order to create the lowest energy, the particle must-occupy the whole box without any node, having

the highest probability at the center.
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«* Problems

Q 1. State and explain the third postulate of quantum mechanics.

Q 2. Why should the function representing a quantum mechanical state be continuous, single-valued and finite?
Q 3. Why don’t we report non-eigenvalues directly? What is the need for their expectation values?

Q 4. Derive Schrodinger wave equation from the postulates of quantum mechanics.

Q 5. What is the Max-Born interpretation of “wave function”? Explain in detail by taking the example of one-

dimensional systems.

Q 6. What is position-time uncertainty? How would you prove it for the photons passing through a slit of
length d?

Q 7. What is operator commutation? Evaluate [£2, Py ].

Q 8. Explain the energy-time uncertainty for a particle traveling along x-axis. Also, support your argument
from the results of operator algebra.

Q 9. What are Hermitian operators? Prove that the operators for linear momentum and angular momentum are
Hermitian in nature.

Q 10. Can the average value for the square of the Hermitian operator be negative? If not, explain why?
Q 11. Derive and solve the Schrodinger wave equation for a particle moving in a one-dimensional box.

Q 12. Prove the Heisenberg’s uncertainty principle for the particle trapped in a one-dimensional box of length
a. Also, comment on its validity in other systems.

Q 13. Give the pictorial representation of the first three quantum mechanical states of a particle in a one-
dimensional box. Also, formulate the corresponding symmetry and number of nodes.

Q 14. Derive the relation between the box length and the wavelength of the particle in the 1-dimensional box.

Q 15. What is zero-point energy? How is it created by a particle of mass m which is trapped in a one-
dimensional box of length a.

Q 16. What is the average position? How is it different from the “most probable position”?

Q 17. State and explain the Bohr’s correspondence principle.
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